Angiotensin II increases macrophage-mediated modification of low density lipoprotein via a lipoxygenase-dependent pathway.
نویسندگان
چکیده
The molecular and cellular mechanisms by which hypertension enhances atherosclerosis are poorly understood. Angiotensin II (Ang II) has been implicated in the regulation of cellular lipoxygenases (LO), which are thought to play a role in atherogenesis by inducing oxidative modification of low density lipoprotein (LDL). We sought to test the hypothesis that Ang II would stimulate murine macrophage LO activity (which has both 12- and 15-LO activity). Competitive binding studies revealed the presence of Ang II AT1 receptors on mouse peritoneal macrophages (MPM) and J-774 cells, but not on the RAW cell line. Valsartan, a specific AT1 receptor antagonist inhibited Ang II binding, whereas PD 123319, an AT2 receptor antagonist did not. Incubation of MPM or J-774 cells with Ang II (10 pM to 1 microM) for 24 h led to a 2.5-3.5-fold increase in LO activity, measured as generated 13-HODE or 12(S)-HETE. This stimulation was inhibited by valsartan, but not by PD 123319. In contrast, Ang II did not stimulate LO activity in RAW macrophages. Semiquantitative reverse transcriptase-polymerase chain reaction showed a 2-3-fold increase in LO mRNA in MPM, but not in RAW cells after treatment with Ang II. Ang II also induced an increase in 12-LO protein. In addition, pretreatment of J-774 cells with Ang II increased in a dose-dependent manner the ability of the cells to modify LDL, resulting in greater chemotactic activity for monocytes, typical of minimally modified LDL. This stimulation was inhibited by AT1 receptor blockade. In summary, these data suggest that Ang II increases macrophage LO activity via AT1 receptor-mediated mechanisms and this further increases the ability of the cells to generate minimally oxidized LDL. These studies provide a link between hypertension and the associated increased atherosclerosis observed in hypertensive patients.
منابع مشابه
5-Lipoxygenase is not essential in macrophage-mediated oxidation of low-density lipoprotein.
The concentration-dependent effects of a series of lipoxygenase inhibitors and antioxidants on the macrophage-mediated oxidative modification of low-density lipoprotein (LDL) were measured. Their influence on macrophage 5-lipoxygenase pathway activity was also studied over the same concentration range. No correlation between inhibition of 5-lipoxygenase and of macrophage-mediated oxidation of L...
متن کاملAntioxidant Effects of Vitamins C and E on the Low-Density Lipoprotein Oxidation Mediated by Myeloperoxidase
Background: Oxidative modification of low-density lipoprotein (LDL) appears to be an early step in the pathogenesis of atherosclerosis. Meanwhile, myeloperoxidase (MPO)-catalyzed reaction is one of the potent pathway for LDL oxidation in vivo. The aim of this study was to evaluate in vitro antioxidant effects of vitamins C and E on LDL oxidation mediated by MPO. Methods: MPO was isolated from f...
متن کاملGene expression in macrophage-rich human atherosclerotic lesions. 15-lipoxygenase and acetyl low density lipoprotein receptor messenger RNA colocalize with oxidation specific lipid-protein adducts.
Oxidatively modified low density lipoprotein (LDL) exhibits several potentially atherogenic properties, and inhibition of LDL oxidation in rabbits decreases the rate of the development of atherosclerotic lesions. In vitro studies have suggested that cellular lipoxygenases may be involved in LDL oxidation, and we have shown previously that 15-lipoxygenase and oxidized LDL are present in rabbit a...
متن کاملAngiotensin II increases the expression of lectin-like oxidized low-density lipoprotein receptor-1 in human vascular smooth muscle cells via a lipoxygenase-dependent pathway.
BACKGROUND Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is a membrane protein that can act as a surface endocytosis receptor for oxidized LDL (ox-LDL). As increased cellular uptake of ox-LDL by macrophages and activated smooth muscle cells may transform these cells into foam cells, potential interactions among LDL oxidation, ox-LDL uptake, and regulators of vascular smooth mu...
متن کاملOxidative modification of low density lipoproteins by human polymorphonuclear leukocytes.
Oxidatively modified low density lipoproteins are thought to play an important role in the generation of macrophage-derived foam cells in early atherosclerotic lesions. Cultured endothelial cells, monocytes, macrophages and smooth muscle cells can modify low density lipoproteins, either by a free radical mechanism or by the action of lipoxygenases. Previous studies demonstrated that activated h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 272 34 شماره
صفحات -
تاریخ انتشار 1997